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Multihead Global Attention and Spatial Spectral
Information Fusion for Remote Sensing

Image Compression
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Abstract—In recent years, convolutional neural network (CNN)
based methods have been widely used in remote sensing image
compression tasks. However, CNN is commonly used to extract
local information and does not fully utilize global contextual in-
formation. The transformer model can effectively extract the la-
tent contextual information in remote sensing images due to its
multihead self-attention mechanisms. Due to the multiscale local
features and global low-frequency information of remote sensing
images, existing deep-learning-based compression methods have
not effectively combined CNN and transformer. In order to over-
come the limitations of the above methods, a multihead global
attention and spatial spectral information fusion network (MGSS-
Net) is proposed for remote sensing image compression. First, a
spatial spectral information fusion attention module (SSIF-AM)
is constructed to obtain multiscale local information. Second, a
multihead global attention module (MHG-AM) is proposed to
capture rich global context information. Third, a local global col-
laboration module is developed to explore the correlation between
the multiscale local features obtained by SSIF-AM and the global
visual features obtained by MHG-AM, and to efficiently model the
intrinsic relationships between them to achieve effective feature
fusion. Experimental results show that compared with advanced
compression models, the proposed MGSSNet method achieves bet-
ter compression performance. In addition, using reconstructed im-
ages obtained by different compression methods for classification
tasks has proven that the proposed method can help achieve better
classification performance, indicating that the proposed compres-
sion method can more fully preserve important information in the
image.

Index Terms—Attention network, compression, deep learning,
remote sensing images, variational autoencoder (VAE).
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I. INTRODUCTION

R EMOTE sensing images are digital representations of
information about the Earth’s surface obtained from satel-

lites, or other sensors. Because of its ability to reflect a variety of
material properties, remotely sensed imagery is widely used in
many fields, including Earth science, environmental monitoring,
urban planning, atmospheric science, and agriculture [1], [2],
[3], [4]. However, the increase in spatial and spectral resolution
means that more pixels and bits are needed to represent the data,
which can lead to a sharp increase of the amount of data in
remote sensing images, causing serious transmission or storage
problems for remote sensing satellites and users. Therefore, the
compression of remote sensing images is of great significance.
Compared with natural images, remote sensing images have
a larger imaging angle, which makes remote sensing images
contain more ground object information and the content is
more complex. Although there are many image compression
technologies, most of them cannot effectively process both
multiscale local information and global information in the image
simultaneously, making it difficult for these methods to achieve
high-quality compression of remote sensing images.

The huge amount of data in remote sensing images requires
efficient compression methods for processing. There are three
main categories of traditional image compression algorithms,
including vector quantization based methods, predictive coding
based methods, and transformation coding based methods. The
theoretical basis of vector quantization coding is Shannon’s rate
distortion theory. In order to reduce the complexity of compres-
sion methods, Qian proposed a fast vector quantization compres-
sion method to achieve good compression performance. The vec-
tor quantization encoding method is to change the input vector
into a codeword index that matches the input vector in the code-
book for data transmission and storage; during decoding, just
search the codebook [5]. Three-dimensional (3-D)-multiband
linear predictor (MBLP) is a prediction-based technology that
first removes spatial redundant information, then predicts the
current frequency band, and finally uses an entropy decoder
to encode the prediction residual [6]. 3-D-set partitioning in
hierarchical trees (SPIHT) is a method for 3-D image com-
pression transformation, which applies 3-D wavelet transform
to the spatial and spectral domains [7]. Most of the traditional
methods are based on transformation methods, which have high
algorithm complexity and do not take into account the unique
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characteristics of remote sensing images, which can lead to
unsatisfactory remote sensing image compression performance.

In recent years, many researchers have focused on the increas-
ingly development of deep-learning technologies. Among them,
the most widely used is convolutional neural network (CNN)
[8]. Compared with recurrent neural network [9] and generative
adversarial network (GAN) [10], CNN processes information
very similarly to the human visual system, which makes CNN
plays a huge role in the field of computer vision. In contrast,
GAN training is complex, and the training process is prone
to oscillation and nonconvergence. The above methods cannot
accurately model the relationship between multiscale local in-
formation and global visual features. If the above methods are
directly used for compression, it is difficult to consider multiple
feature information at the same time, and can only achieve
suboptimal rate distortion performance.

At present, many learning-based image compression frame-
works are constructed by combining neural networks and tra-
ditional compression methods. For these methods, the input
image block is first downsampled multiple times through CNN
to map the pixel data into a quantified representation. Then, some
coding methods, such as arithmetic encoding, are used to further
compress the data, resulting in less data. The goal of compression
is to reduce the entropy of the entropy model between the sender
and the receiver, so some compression models will add entropy
models to the framework (such as single-core Gaussian model,
mixed Gaussian model, Laplacian model, factorized entropy
model, conditional entropy model, etc.) to introduce prior in-
formation to conduct more accurate modeling [11], [12], [13],
[14]. Image compression consists of two main tasks, including
efficient compression of images and high-quality reconstruction
of images. These two parts are closely related, and in order
to achieve high-performance compression, the model needs to
fully consider the relationship between image encoding and
decoding. Due to the reversal-like relationship between the two
tasks, it is required that the encoding and decoding parts have
a similar and symmetrical structure. Therefore, autoencoders
(AE) and variational autoencoders (VAE), which have both
symmetric structures and excellent image reconstruction capa-
bilities, have attracted widespread interest. Some works have
designed CNN-based image compression models that utilize AE
to construct an end-to-end structure, mainly to learn a reversible
mapping relationship that can convert pixels into quantifiable
latent representations [15], [16], [17]. However, the mapping
space of a fully automatic encoder is not continuous, and can
only perform one-to-one mapping of inputs and outputs, which
can result in its latent representation space being discontinuous
and the reconstructed image pixels being excessively rough. In
contrast, VAE has a continuous latent space, which helps to re-
construct images with smooth transitions. In addition, VAE can
generate high-quality reconstructed images with more detailed
information by learning the probability distribution of images
[18], [19], [20]. If VAE is used for compression and reconstruc-
tion of remote sensing images, it is necessary to combine the
imaging characteristics of the remote sensing images and design
a reasonable compression method.

In the field of computer vision, CNNs are currently the most
popular image learning techniques, mainly due to their powerful

feature extraction capabilities [21], [22], [23]. Remote sensing
images contain rich spatial information, and the use of CNNs can
effectively remove spatial redundant data, thereby improving
compression performance. Ma et al. [21] proposed the iWave
framework for creating wavelet-like transforms suitable for im-
age compression. It uses CNN for training, embedded in deep
networks, and supports multiscale analysis. Tang et al. [23]
proposed an end-to-end image compression method by combin-
ing graph attention and asymmetric CNN. To a certain extent,
this method overcomes the excessive attention of traditional
CNNs to local features, promotes information interaction, and
takes into account the relationship and location information at
the channel level. Although CNN-based methods have demon-
strated excellent ability to extract spatial information and local
contextual information, it cannot be ignored that these methods
still have some limitations. On the one hand, CNN has a small
receptive field. If you want to obtain long-distance contextual
information, you need to use convolutions with large-size con-
volutional kernels for spatial information extraction. However,
increasing the size of the convolution kernels can lead to a sharp
increase in parameter amount and computational complexity.
When there are long-distance features, such as rivers and bridges
in the image, the model inevitably encounters the bottleneck
of compression performance. On the other hand, CNNs utilize
convolutional filters to extract potential features in the local
receptive domain, which leads to the network paying too much
attention to the local features of the image and reducing the
attention to the global visual features.

In recent years, transformer-based image data processing
methods have attracted much attention in the field of computer
vision [24], [25], [26], [27]. Among them, vision transformer
(ViT) has sparked a revolution in the field of image processing.
It divides images into small pieces and then uses self-attention to
capture the global latent representation, achieving powerful abil-
ity to capture long-distance contextual relationships. Li et al. [28]
proposed a learning image compression network based on visual
transformer by dividing the input image into blocks and using
different types of transformer blocks in the encoder and decoder
to achieve efficient image compression. At the same time, using
a strategy based on residual coding, this method achieves a
peak signal-to-noise ratio (PSNR) improvement of 0.75 dB at
0.15 bpp on the Kodak dataset, and has better performance on
multiscale structural similarity index metric (MS-SSIM) at low
bit rates. Although these methods can extract the global feature
information of images, they do not make good use of local
semantic features and feature information of different scales,
which may result in the reconstructed image not showing good
performance in terms of detailed features.

Although current-learning-based image compression meth-
ods have made great progress [29], [30], [31], [32], existing
compression methods still have the following problems. The
first problem is that the resolution of remote sensing images is
generally meter-level, which leads to lower spatial continuity
between adjacent pixels in remote sensing images compared
with ordinary images. In addition, image compression methods
typically rely on the continuity between adjacent pixels, and
lower pixel continuity may lead to more data redundancy, re-
sulting in a decrease in compression performance. The second
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problem is that, unlike ordinary images, remote sensing images
often contain features of different scales of land cover, including
small-scale features, such as vehicles and buildings, as well as
large-scale geographic features that run through the entire image,
such as rivers, roads, and oceans. Therefore, how to effectively
capture both small- and large-scale features simultaneously is
a worthwhile research question. At present, in order to solve
this problem, researchers have proposed several methods, in-
cluding multiscale analysis and multimodal data fusion [33],
[34], aimed at effectively associating small-scale and large-scale
features. However, these methods do not fully consider global
information. The third problem is that remote sensing images
not only contain local information at various scales, but also
global information, such as terrain and landforms. If global
information is ignored, the model may lose its understanding of
important context, such as the distribution of ground objects and
geomorphic features, resulting in artifacts in the reconstructed
image. Currently, researchers often use large-sized convolution
or pyramid networks to capture global features, but these meth-
ods do not fully consider multiscale local information [35].
Finally, the current remote sensing image compression frame-
works often use fully factorized entropy models, which will
lead to some statistical redundancy information being retained
in the distribution of latent representations, resulting in poor
compression performance.

In this article, a remote sensing image compression network
based on multihead global attention and spatial spectral infor-
mation fusion is designed. In order to solve the problem of poor
interpixel continuity of remote sensing images, the proposed
multihead global attention and spatial spectral information fu-
sion network (MGSSNet) selects VAE as the basic framework
and uses its continuous latent space to generate smooth transition
images, so as to reconstruct high-quality images with more
detailed features. In order to capture both the small- and large-
scale features in the remote sensing images, a local attention
module [spatial spectral information fusion attention module
(SSIF-AM)] is constructed by introducing bar convolution and
pooling layers of different scales into the local attention block. In
addition, in order to increase the receptive field without increas-
ing the additional computational burden, the bar convolution
is utilized in SSIF-AM instead of the ordinary convolution. At
the same time, this article constructs a multihead global atten-
tion module (MHG-AM) by using the multihead self-attention
(MHSA) mechanism to capture global context information. In
general, CNN acts on the local acceptance domain in the form
of convolutional filters, which makes the features extracted by
CNN contain more high-frequency information, such as edges,
contours, and texture information [36]. In contrast, self-attention
is generally used to capture global information, and therefore
it is considered a low-pass filter [37]. Under the guidance of
self-attention mechanism, the network can adaptively focus on
different regions of the image. This mechanism is beneficial for
capturing the relationships between a wide range of features
of an image, making the image more visually coordinated.
Considering the complementarity of CNN and self-attention in
feature extraction, the integration of these two modules is helpful
to fully extract the local features of multiscale and the global

features of the whole image. Therefore, this article designs
a local global collaboration module (LGCM) to explore the
correlation between the multiscale local features obtained by
SSIF-AM and the global visual features obtained by MHG-AM,
so as to efficiently model the intrinsic relationship between them
and achieve effective integration. In addition, general encoding
methods directly assume the probability model of image blocks
or even the entire image, while this article adopts a layered prior
method. The core idea of this method is to learn the probability
distribution model of each quantized representation by capturing
edge information to generate a more accurate entropy encoding
model. Through this layered prior method, MGSSNet can better
adapt to the features of different images, improving the effi-
ciency and quality of image compression. In order to verify the
effectiveness of the proposed architecture in image compression,
a rate distortion optimization strategy is adopted in this article,
which can be represented as

Minloss = R+ λ ·D
= EX∼pX

[−log2pŷ(Q(Ma(X)))]︸ ︷︷ ︸
rate

+ EX∼pX
[−log2pẑ(ẑ)]︸ ︷︷ ︸

rate

+ λ · EX∼pX
[d(X, X̂)]︸ ︷︷ ︸

distortion

(1)

where pX is the unknown distribution of the image, Q is the
quantification, Ma is the main encoder, ŷ = Q(y) is the quan-
tified latent representation, pŷ is the entropy model that can be
learned, X is the chunks of remote sensing image data passed
into the network, and X̂ is the reconstructed image. rate is
cross-entropy between the latent marginal distribution and the
learned entropy model. d(X, X̂) is the loss between the original
image and the reconstructed image and d() denotes mean square
error (MSE). To put it simply, R represents the entropy rate,
D represents the distortion between the original image and the
reconstructed image, and different bitrates can be controlled by
adjusting the penalty coefficient λ.

In this article, a large number of experiments were carried out
on the remote sensing image dataset San Francisco [38] and
Northwestern Polytechnical University (NWPU)-RESISC45
[39]. Experimental results show that compared with some image
learning compression methods, i.e., Minnen et al. [14], Min-
nen et al. [14] (mean), Balle et al. [40] (hyperprior), Balle et al.
[40] (factorized-relu), Cheng et al. [11], and some traditional
image compression methods, including JPEG2000 [41], WebP
[42], and BPG [43], the compression performance of the pro-
posed network can provide better performance in PSNR and
MS-SSIM. In addition, a variety of ablation experiments were
conducted to verify the effectiveness of the proposed SSIF-AM,
MHG-AM, and LGCM, respectively.

The main contributions of this article are summarized as
follows.

1) In this article, we propose an SSIF-AM that can effectively
capture both small- and large-scale features of images.
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Fig. 1. Overall structure diagram of proposed MGSSNet (in the overall performance curve for β, β represents a harmony hyperparameter, and “overall
performance” refers to various performance metrics, such as PSNR and MS-SSIM).

Through the bar convolution of different scales, SSIF-AM
enables the model to extract potential representation fea-
tures at different levels while increasing the receptive field.

2) In order to better understand the contextual information
of images, an MHG-AM was constructed. The module
realizes the accurate capture of global context informa-
tion through an MHSA mechanism, which enables the
compression model to better preserve the overall features
of the image, reduce the probability of artifacts, and thus
improve the quality of reconstructed images.

3) In order to effectively fuse high-frequency local informa-
tion and low-frequency global information, a harmonic
hyperparameterβ was introduced, and an LGCM was con-
structed. This article effectively explores the correlation
between multiscale local information and global visual
features, and efficiently models the intrinsic relationship
between them, achieving effective feature fusion.

4) In this article, the designed SSIF-AM, MHG-AM, LGCM,
context model, and factorized entropy model are effec-
tively embedded into the VAE framework, and a MGSS-
Net is proposed for remote sensing image compres-
sion. The MGSSNet can effectively extract the abundant

high-frequency and low-frequency information in the im-
age, and realize the efficient compression of remote sens-
ing images.

In this article, the good compression performance of MGSS-
Net was verified by sufficient experiments on San Francisco
and NWPU-RESISC45. The rest of this article is organized as
follows. In Section II, SSIF-AM, MHG-AM, LGCM, and the
components of MGSSNet are introduced in detail. In Section III,
the experimental results and analysis are provided. Section IV
makes a summary of this article. Finally, Section V concludes
this article.

II. METHODOLOGY

In this section, we will introduce the proposed SSIF-AM,
MHG-AM, LGCM, and MGSSNet in detail.

A. The Overall Framework of the Proposed MGSSNet

In this article, VAE is utilized as the basic framework to design
the MGSSNet for remote sensing image compression. The over-
all structure diagram is shown in Fig. 1. The structure is divided
into two parts. For the image compression part, the encoder
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maps the remote sensing image data block as a latent represen-
tation feature by combining SSIF-AM, MHG-AM, LGCM, and
convolutional blocks. Then, the quantization, arithmetic coding,
text context module, entropy parameter, and factorized entropy
model are utilized to further remove the statistical redundancy,
and the minimum bit stream after data processing of the model is
obtained. For the image decoding part, the reconstructed image
with high quality is obtained through arithmetic decoding, text
context module, entropy parameter module, factorized entropy
model, and decoder.

Specifically, according to the spatial information distribution
characteristics of remote sensing images, this article proposes
SSIF-AM based on multiscale bar convolution, MHG-AM based
on MHSA, and LGCM with efficient fusion of multiscale lo-
cal information and global visual features. SSIF-AM uses bar
convolution of different scales, point convolution, maximum
pooling layer, and average pooling layer to extract multiscale
information and spatial spectral fusion information from im-
ages. Moreover, MHG-AM retains the equally important global
context information, which is based on MHSA and embeds
local information into the global information by introducing
convolutional branches, thereby obtaining latent representation
features that are more conducive to image reconstruction. In
addition, the proposed LGCM explores the correlation between
multiscale local information and global visual features, and
efficiently models the intrinsic relationship between them to
achieve effective fusion. Then, the context model for capturing
contextual information, as well as mean and scale parameters
for generating hyperprior information, are added to the network
model. Further, unlike traditional entropy coding that directly
assumes image models, this article designs a factorized entropy
model to learn each quantized representation by obtaining side
information, making the entropy model more accurate. Finally,
GDN is also adopted in this model, which is a nonlinear activa-
tion function. Compared to other normalization functions, GDN
is more suitable for image compression.

In Fig. 1,Ma andMh are the main encoder and main decoder,
respectively, which are used to learn the latent representation
features of the remote sensing image. Na and Nh are the hyper
encoder and hyper decoder, respectively. In this article, the
hyperprior network is adopted to learn the entropy model on
which entropy coding depends. It is also used to generate the
parameters of the entropy model. Q represents the quantizer,
and AE and AD represent arithmetic encoding and arithmetic
decoding, respectively. The one between AE and AD is the
smallest form (bit stream) in which the data exist in this model.
The context model is an autoregressive model for capturing
context information, and entropy parameters are suitable for
generating mean and scale parameters conditional on hyperprior
information. The factorized entropy model is a model that can
capture more edge information [13], [14], [40].

Here, after each downsampling and upsampling, LeakyReLU,
convolution with stride 1, and GDN will be sequentially added.
In this way, the data are normalized and gradient explosions are
prevented. After each GDN, a buffer module is added, which
is mainly composed of two convolutions with stride 1 and two
LeakyReLU. In order to speed up the training of the network,

the buffer module adds some residual connections. The buffer
module is mainly designed to further stabilize the data after
downsampling.

First, the remote sensing imageX is input to the main encoder
Ma, and after passing through multiple residual blocks, SSIF-
AM, MHG-AM, and LGCM, the latent representation features
containing multiscale local information and global information
is obtained, i.e.,

Y = Ma(X; Υa)

= Wd5 ∗ (WSSIF−AM3(Wd4 ∗ (WLGCM

(Wd3∗(WSSIF−AM2(Wd2∗(WSSIF−AM1(Wd1∗X)))))))).
(2)

Here, Υa represents the parameters of each part, ∗ represents
the relevant convolution operations, WSSIF−AMi

(i = 1, 2, 3)
represents the SSIF-AM, WLGCM represents the weight parame-
ters of LGCM, and Wdi(i = 1, 2, 3, 4 · ··) represents the various
residual blocks, convolutions, and GDN operations in Fig. 1.
Since the entropy model corresponds to the prior information
of the compact latent representation, the edge information can
be regarded as the prior information of the entropy model
parameters. Finally, the obtained Y is sent to hyper encoder
Na to capture edge information, i.e.,

Z = Na(Y ; Ωa)

= Wd5 ∗WLeakyRELU4(Wd4 ∗WLeakyRELU3

(Wd3 ∗WLeakyRELU2(Wd2 ∗WLeakyRELU1(Wd1 ∗ y)))).
(3)

Here, Ωa represents the parameters of the hyper en-
coder, Wdi(i = 1, 2, 3, 4, 5)represents the convolutional layer,
WLeakyRELUi(i = 1, 2, 3, 4) represents the Leaky RELU layer.
Then, Z is quantized, and the quantized Z is further compressed
by an arithmetic encoder to obtain the bitstream. Then, a factor-
ized entropy model and an arithmetic decoder are used to obtain
Ẑ, which is then sent to a hyper decoder to generate entropy
parameters, i.e.,

θNh
= Nh(Ẑ; Ωh)

= Wd5 ∗WLeakyRELU4(Wd4 ∗WLeakyRELU3

(Wd3∗(WLeakyRELU2(Wd2∗(WLeakyRELU1(Wd1∗Ẑ)))))).
(4)

Here, Ωh represents the hyper decoder and Ẑ parameters,
Wdi(i = 1, 2, 3, 4, 5) represents the convolutional layer, and
WLeakyRELUi(i = 1, 2, 3, 4) represents the Leaky RELU layer.

Before image reconstruction, this article studies the problem
of minimizing rate distortion loss. In this article, each latent
representation variable ŷi is modeled into a model that conforms
to the Gaussian distribution, which ensures that the distributions
of the main encoder and the main decoder can be well matched
during training under the premise of adding additive uniform
noise. In addition, mean parameters and scale parameters are



1004 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 17, 2024

added to the model to improve the model’s ability to recon-
struct images. The predicted Gaussian model parameters are as
follows:

pŷ(ŷ|ẑ, θNh
, θcm, θeq)=

∏(
N(μi, σi

2) ∗ U
(
−1

2
,
1

2

))
(ŷi).

(5)

Here, θNh
is the parameter of the hyper decoder, θcm is

the parameter of the text context model, θeq is the parameter
of the entropy parameter network, N(μi, σi

2) is the Gaussian
distribution, μi is the mean, σi

2 is the variance, and U(− 1
2 ,

1
2 )

is the uniformly distributed noise.
Finally, this article reconstructs the remote sensing image X̂

by using the main decoder Mh, i.e.,

X̂ = Mh(Ŷ ; Υh)

= Wd5 ∗WSSIM−AM(Wd4 ∗WSSIF−AM2

(Wd3 ∗WLGCM(Wd2 ∗WSSIF−AM1(Wd1 ∗ Ŷ )))). (6)

Here, Υh is the parameter of the main decoder, Ŷ is Y after
decoding by the arithmetic decoder, ∗ is the relevant convolution
operation, WSSIF−AMi

(i = 1, 2, 3) is the weight parameter of
SSIF-AM, WLGCM is the weight parameter of LGCM, and
Wdi(i = 1, 2, 3, 4 · ··) is the various residual block, convolution,
and GDN operations in Fig. 1.

It should be emphasized that the SSIF-AM, MHG-AM, and
LGCM proposed in this article are embedded between the main
encoder and the main decoder. On the one hand, SSIF-AM can
adaptively extract microlatent representations and large-scale
features at different scales under the framework of VAE. On
the other hand, MHG-AM is embedded in the middle of the
main encoder and main decoder, allowing the network to capture
the appropriate global features. MHG-AM is not embedded
in the front of the network, which may cause the model to
obtain too much global information, so that the reconstructed
image would lack some detailed features. At the same time, this
article did not embed MHG-AM at the tail of the main encoder
because after the feature map at the tail of the main encoder was
downsampled four times, the feature map became very small in
the spatial dimension, which results in only a small amount of
global information available for learning on the feature map,
so using SSIF-AM for global feature extraction is not very
meaningful. Furthermore, LGCM can effectively integrate local
information and global visual features. Finally, in order to keep
the hyper encoder and hyper decoder simple and capture sparse
edge information, the model uses Leaky RELU, which is more
efficient than RELU.

B. SSIF-AM

Remote sensing images have large spatial data redundancy,
and SSIF-AM helps the model to identify feature information
at different scales, so that the reconstructed images retain more
detailed features. In general, the model uses a large convolutional
kernel to capture large-scale feature information. However, as
the size of the convolutional kernel increases, the computational
complexity increases dramatically. In contrast, bar convolution

has the advantage of acquiring information over long distances
with fewer parameters. SSIF-AM uses bar convolution instead
of ordinary convolution to increase the receptive field at the same
complexity. The process of SSIF-AM can be represented as

ISSIF−AM=I⊗Wconv1×1(Wconv5×1∗Wconv1×5∗Wconv5×5(I)

+Wconv7×1 ∗Wconv1×7 ∗Wconv5×5(I)

+Wconv9×1 ∗Wconv1×9 ∗Wconv5×5(I)

+WAvgPool2D ∗Wconv5×5(I)

+WMaxPool2D ∗Wconv5×5(I)

+Wconv5×5(I)). (7)

Here, I represents the input of SSIF-AM, W represents the
weight parameters of each convolutional layer and pooling layer,
ISSIF−AM represents the output of SSIF-AM, and ⊗ represents
Hadamard Product.

The block diagram of SSIF-AM is shown in Fig. 2. First,
the 2-D convolution of size 5 × 5 is used to extract the local
spatial information of the image. Then, three bar convolutions of
different scales are utilized to process the feature map to extract
local information at different scales. In addition, AvgPooling and
MaxPooling are adopted to extract the average and maximum
information of the feature map, respectively. Then, the feature
map obtained by bar convolution and the latent representa-
tion obtained by two pooling are fused by adding operations
to complete the efficient extraction of local multiscale spatial
information. In addition, remote sensing images also contain
certain spectral information. Therefore, after extracting local
spatial information, a layer of point convolution is added to fuse
spectral information. Finally, in order to speed up the training of
the model and prevent overfitting, some residuals are introduced
into the SSIF-AM module is embedded.

C. MHG-AM

In recent years, ViT technologies have been widely used in
the field of computer vision. Due to the ability of ViT to capture
long-distance dependencies between long-distance features, the
model with ViT has demonstrated excellent performance. This
ability to capture global features mainly comes from its core
component, i.e., MHSA. This ability to capture global low-
frequency information makes transformer often understood as a
low-pass filter; CNN, on the other hand, is generally utilized to
capture local information, so it is often considered to be a kind
of high-pass filter. Considering the different but complementary
nature of transformer and CNN, this article proposes an MHG-
AM that embeds the core component of transformer (MHSA)
and CNN together. This integration method is beneficial for the
full extraction of multilevel information.

The structure diagram of MHG-AM is shown in Fig. 3. The
global semantic features of MHG-AM are obtained through
modeling, which includes MHSA, a Softmax layer, a Hadamard
product, a dropout layer, two matrix multiplication, two point
additions, two convolutional layers, and several linear layers.
MHSA generally maps data into different projection spaces,
and then uses tensor multiplication of information from different
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Fig. 2. Schematic diagram of SSIF-AM.

Fig. 3. Schematic diagram of MHG-AM structure.

projection spaces to obtain context features with global relation-
ships. The process of MHG-AM can be represented as

Output = Input � (WConv5×5(WLinear(V ⊗ (WDropout

(WSoftmax(Q⊗K))))+WConv3×3(Input)))+Input.
(8)

Here, Input represents the input, WLeakyRELU represents the
LeakyRELU layer, WConv represents the convolutional layer,
WDropout represents the random deactivation layer, ⊗ repre-
sents matrix multiplication, + represents addition, Q represents
Query, K represents Key, V represents Value, and Output rep-
resents output. The process of the proposed MHG-AM is shown
in Algorithm 1.

D. LGCM

The high-frequency information of the image usually includes
edges, textures, small objects, and some changes in the ground
objects. In the process of image compression, more detailed fea-
tures should be retained, which is conducive to the enhancement
of image edge information and the recovery of enhanced texture.
In addition, low-frequency information also plays a crucial role
in the reconstruction process of the image, including balanc-
ing the overall brightness and color, reducing discontinuities
between pixels, maintaining the uniformity of the image, and
helping to restore the overall structure. Therefore, when design-
ing the network, corresponding subnetworks are designed for the
extraction of low-frequency and high-frequency information of
images, including SSIF-AM for capturing high-frequency local
information and MHG-AM for capturing global information.
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Algorithm 1: The Feature Extraction Process of the Proposed MHG-AM.

Input: Remote sensing data X ∈ R
b×c×h×w

1: for i = 1 to T do
2: Perform Flatten, Reshape, and Linear, the result denoted as x ∈ R

b×n×3c.
3: Perform Split, x denoted as Q ∈ R

b×n×c, K ∈ R
b×n×c and V ∈ R

b×n×c.
4: Perform Conv3×3, x ∈ R

b×c×h×w denoted as x1 ∈ R
b×c×h×w.

5: Perform Reshape and Transpose, Q, K, V denoted as Q ∈ R
b×head×n×headd, K ∈ R

b×head×n×headd,
V ∈ R

b×head×n×headd, respectively.
6: Perform matrix multiplication of the transpose of Q and K, softmax, dropout, the result denoted as

attn ∈ R
b×head×n×n.

7: Perform attn and V matrix multiplications, the result denoted as attn1 ∈ R
b×head×n×headd.

8: Perform Transpose, Flatten, Linear, the result denoted as attn2 ∈ R
b×n×c.

9: Perform Transpose, Reshape, the result denoted as attn3 ∈ R
b×c×h×w.

10: Add attn3 and x1 to get attn4 ∈ R
b×c×h×w.

11: Perform Conv5×5 on attn4 to get attn5, then perform the Hadamard product of attn5 and x1 to get
attn6 ∈ R

b×c×h×w.
12: Perform a residual operation and add x and attn6 to get output attn7 ∈ R

b×c×h×w.
end for

Output: Feature map X̃ ∈ R
b×c×h×w after feature extraction.

Fig. 4. Proposed LGCM (βis a harmony hyperparameter and ⊕ is pointwise
addition).

These two modules are utilized to extract both high-frequency
and low-frequency information to achieve high-quality image
reconstruction. In the experiment, SSIF-AM showed a higher
improvement in the quality of reconstructed images compared to
MHG-AM in evaluation metrics, such as PSNR and MS-SSIM.
Therefore, in this article, the multiscale local features obtained
by SSIF-AM are taken as the main body, and the global features
obtained by MHG-AM are used as auxiliary information, and
the LGCM can be constructed to effectively integrate local
information and global information.

The LGCM structure is shown in Fig. 4. a represents the high-
frequency local feature information processed by the subnet-
work SSIF-AM, which mainly extracts the relationship between
pixels and surrounding pixels; b represents the low-frequency
global information processed by the subnetwork MHG-AM,
which mainly represents the relationship between global pix-
els; β is the harmony hyperparameter; and o represents the
high-quality feature information after the effective fusion of
high-frequency global information and low-frequency global
information, which obtains the harmonious relationship between
a single pixel and the surrounding pixels, as well as the global

pixels. In this article, SSIF-AM was used as the main body, and
the local feature map of the input image was first extracted, then
the global information extracted by MHG-AM was multiplied
by the harmonic hyperparameter, and finally the feature maps of
the two branches were added point by point to obtain the final
feature map that effectively fused the local information and the
global information. In this article, the harmony between the two
types of information can be adjusted by adjusting the value of
the hyperparameter β. The process of LGCM is

OutputLGCM = ModuleSSIF−AM + β • ModuleMHG−AM. (9)

Here, ModuleSSIF−AM represents the output of the SSIF-
AM module, β represents the harmonic hyperparameter,
ModuleMHG−AM represents the output of MHG-AM, and
OutputLGCM represents the output of LGCM.

III. EXPERIMENTAL RESULTS AND ANALYSIS

Sufficient experiments were carried out on the dataset San
Francisco [38] and the dataset NWPU-RESISC45 [39], and the
two datasets contain rich ground feature information, which
could effectively evaluate the effectiveness of the proposed
MGSSNet method. In this article, MGSSNet is compared with
commonly used image compression methods JPEG2000 [41],
WebP [42], BPG [43], and several latest methods based on deep
learning, including Minnen et al. [14], Minnen et al. [14] (mean),
Balle et al. [40] (hyperprior), Balle et al. [40] (factorized-ReLU),
and Cheng et al. [11]. Experimental results show that the pro-
posed MGSSNet method can provide excellent compression
performance in PSNR, MS-SSIM, and other commonly used
evaluation indicators. This section includes experimental setup,
experimental results on PSNR and MS-SSIM, visualization
experiments of reconstructed images, ablation experiments, and
classification performance of reconstructed images.



SHI et al.: MULTIHEAD GLOBAL ATTENTION AND SPATIAL SPECTRAL INFORMATION FUSION 1007

Fig. 5. Some images from San Francisco dataset. (a) Residential buildings.
(b) Coastline. (c) Highway. (d) Basketball court. (e) Badminton court. (f) Port.
(g) Junction. (h) Forest. (i) Vehicle. (j) School.

Fig. 6. Some images from NWPU-RESISC45 dataset. (a) Airports. (b) Roads.
(c) Coastlines. (d) Factories. (e) Islands. (f) Airflow. (g) Cities. (h) Forests.
(i) Ports. (j) Parking lots.

A. Introduction to Remote Sensing Image Datasets

1) San Francisco Dataset: San Francisco is a dataset of
remotely sensed images from [38]. San Francisco is a remote
sensing image with a resolution of 17 408 × 17 408. It contains
information on various categories of features, such as cities,
highways, rivers, ports, oceans, etc. The bit depth of the image
is 24, so it contains a wealth of feature information. In this
article, San Francisco was cropped to 256× 256 size, and finally
obtained 3000 valid images (the parts that contain black bars or
only a single pixel are removed). The dataset is then divided
into a training set, a validation set, and a test set at an 8:1:1 ratio.
Fig. 5 shows some samples of this dataset.

2) NWPU-RESISC45 Dataset: NWPU-RESISC45 is a
widely used remote sensing image dataset for remote sensing
image classification tasks. The dataset was provided by NWPU
in China. The dataset contains a total of 45 different remote
sensing image scene categories, and each category contains 700
images. Each image has a resolution of 256 × 256 pixels in
RGB color format. The dataset contains a variety of geograph-
ical environments and scenes, covering different categories of
images, such as cities, farmlands, rivers, forests, grasslands, and
airports. A total of 140 images from each category were selected
to form a dataset of 6300 remotely sensed images. After that, it
is divided into training set, validation set, and test set according
to the ratio of 8:1:1. Fig. 6 shows some samples of this dataset.

B. Evaluation Indicators

In terms of image quality evaluation, this article adopts two
common indicators, the PSNR and the MS-SSIM, to compre-
hensively evaluate the quality of the reconstructed images.

1) PSNR: It compares the reconstructed image to the original
image from the point of view of the MSE. The higher the
PSNR value, the higher the fidelity of the reconstructed
image. The PSNR can be expressed as

PSNR(X, X̂) =
1

C

C∑
i=1

10log10

(
max2(Xi)

MSEi

)
. (10)

Here, MSE(X, X̂) = (1/H ×W × C)‖X − X̂‖2F , max2

(X(i)) represents the square of the largest pixel in the ith band,
and C represents the number of bands.

2) MS-SSIM: It is a multiscale structural similarity metric
used to measure the differences between the original and
reconstructed images, including image details merged at
different resolutions [44]. Its value ranges from 0 to 1,
with higher values indicating higher similarity, i.e., higher
quality of the reconstructed image. In order to better com-
pare the difference between MS-SSIM values, this article
converts it into a decibel value, which can be expressed as

MS− SSIM = − 10log10(1−DMS−SSIM) (11)

DMS−SSIM = 1−
M∏

m=1

(
2μXμ�

X
+ C1

μX
2 + μ�

X
2 + C1

)βm

(
2σ

X
�
X
+ C2

σX
2 + σ�

X
2 + C2

)γm

. (12)

Here, DMS−SSIM is a normalized value with a range of 0–1.
M represents different scales, μX and μ�

X
represent the mean of

the original image and the reconstructed image, σX and σ�
X

represent the standard deviation between the original image
and the reconstructed image, σ

X
�
X

represents the covariance
between the original image and the reconstructed image, βm and
γm represent the relative importance between the two terms, and
C1 andC2 are constant terms to prevent the divisor from being 0.

Under the same bit rate conditions, the larger the values of
PSNR and MS-SSIM, the better quality of the reconstructed
image and the higher the similarity between the reconstructed
image and the original image.

C. Experimental Environment and Parameter Settings

In this article, the PyTorch framework is used to implement
all the compression methods based on the deep learning. All
models were trained on an NVIDIA GeForce RTX 3090 using
the Adam optimizer. In addition, all codecs are made on the
same CPU (i9-9900K CPU@3.60 GHz). Two optimizers are
used in this network, one in the main network and the other in
the hyper codec. For the main optimizer, this article initializes
the learning rate to 10−4. In addition, the learning rate of the
optimizer in the hyper encoding and decoding is set to 10−3.
The batch size is set to 8 during training. Each model was
trained 300 times until convergence. For the sake of fairness
in the experimental comparison, all experiments in this article
were performed under the same experimental conditions. In
the experiment, three traditional image compression methods,
including JPEG2000, WebP, and BPG, and five latest image
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Fig. 7. Effects of different parameters on SSIF-AM and MHG-AM. (a) Influence of different sizes of convolution kernels adopted in SSIF-AM on PSNR.
(b) Effect of the number of heads on the PSNR in MHG-AM.

Fig. 8. Compression performance of different methods on San Francisco. (a) Comparison of experimental results on PSNR. (b) Comparison of experimental
results on MS-SSIM.

compression methods based on deep learning, including Minnen
et al. [14], Minnen et al. [14] (mean), Balle et al. [40] (hy-
perprior), Balle et al. [40] (factorized-relu), Cheng et al. [11],
etc., were selected for comparison. The ffmpeg version used by
JPEG2000 is 6.0 and the version used by BPG is 0.9.8. The
penalty coefficient λ used in this article is [0.660, 0.508, 0.211,
0.072, 0.033, 0.013, 0.007]. The sizes of the three pairs of strip
convolution kernels in SSIF-AM are k = 5, k = 7, and k = 9,
respectively. The number of self-attention heads in MHG-AM is
4. The harmony hyperparameter β in LGCM is set to 0.1. Fig. 7
shows the results of experiments conducted on the dataset San
Francisco. Fig. 7(a) represents the effect of three convolutional
kernels of different sizes on PSNR in SSIF-AM, and Fig. 7(b)
shows the effect of the number of heads on PSNR in MHG-AM.
The experimental results show that the parameters selected in
this article are optimal.

D. Experimental Results on PSNR and MS-SSIM

In this article, the rate distortion performance of all methods
is evaluated by PSNR and MS-SSIM. Fig. 8 shows the rate

distortion performance curves of PSNR and MS-SSIM obtained
experimentally on the dataset San Francisco. A total of eight
state-of-the-art image compression methods are selected for
comparison, including three traditional compression methods
and five image compression methods based on deep learning.
Among them, Minnen et al. [14], Minnen et al. [40] (mean),
Balle et al. [40] (hyperprior), Balle et al. [40] (factorized-relu),
and Cheng et al. [11] are all methods based on VAEs. In ex-
periments, whether at high bit rates or low bit rates, the PSNR
and MS-SSIM performance based on deep-learning methods are
better than those based on traditional image coding and decoding
methods. In addition, the MGSSNet method proposed in this
article achieves the highest PSNR and MS-SSIM performance
among all image compression methods based on deep learning.
As can be seen in Fig. 8, the model based on hyperprior has an ad-
vantage over the method that is not based on hyperprior informa-
tion, and this advantage becomes more pronounced in the case
of high bit rates. However, the proposed model achieves better
rate distortion performance than the model based on hyperprior,
which is mainly due to the accurate local information and
relatively complete global information captured by MGSSNet,
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Fig. 9. Compression performance of different methods on NWPU-RESISC45. (a) Comparison of experimental results on PSNR. (b) Comparison of experimental
results on MS-SSIM.

as well as the effective fusion of local information and global
information.

For the traditional image compression methods, it can be
found that the rate distortion performance of BPG is signif-
icantly better than that of WebP and JPEG2000. This is due
to BPG’s support for multichannel encoding, which allows for
independent processing of different color channels, resulting in
increased control over color and detail, helping to achieve higher
quality reconstructed images.

In order to fully verify the compression performance of the
proposed MGSSNet method, some same experiments are carried
out on the dataset NWPU-RESISC45. Fig. 9 shows the PSNR
and MS-SSIM results obtained by different methods on the
dataset NWPU-RESISC45. As can be seen from Fig. 9, the pro-
posed MGSSNet achieves the best compression performance.
Especially in the case of high bit rate, the advantages of the
proposed MGSSNet are more obvious compared with other
compression methods, which fully proves the effectiveness of
the proposed method.

E. Visualization Comparison of Reconstructed Images

In order to verify the visual quality of the reconstructed
images obtained by the proposed MGSSNet, this article
compares the visual quality of the reconstructed images obtained
by different methods. We selected an image from the dataset
San Francisco that included trees and zebra crossings, and
used different compression methods to reconstruct the image
at around 0.3 bpp. We zoomed in on the trees in the upper left
corner and the zebra crossing in the lower right corner to compare
the quality of the reconstructed images of different methods.
Fig. 10 gives the reconstructed image obtained by the proposed
MGSSNet and eight comparison methods. For the traditional
image compression method, it can be found that although the
compression performance of the JPEG2000 is lower than that
of BPG and WebP in PSNR and MS-SSIM, the reconstructed
trees can retain more texture information, which is due to the

JPEG2000 using wavelet transform and supporting multiresolu-
tion encoding. However, the trees reconstructed using BPG and
WebP have become very blurry and have lost all the details. On
the other hand, for the reconstructed images obtained by BPG
and WebP, the edges of the zebra crossing are slightly blurred,
but they are much clearer than the zebra crossing reconstructed
by JPEG2000. For image compression methods based on deep
learning, they all achieve better visual effects than those of
traditional encoding methods and retain more texture features.
As can be seen from Fig. 10, some artifacts will appear in the
reconstructed trees obtained by Minnen et al. [14] (mean), Balle
et al. [40], Balle et al. [40] (factorized-relu), Cheng et al. [11],
and other methods. Finally, comparing Minnen et al., which
has the best visual effect in the comparison method, with the
proposed MGSSNet, it can be seen that the reconstructed trees
obtained by MGSSNet are significantly better than those of
Minnen et al. in the left branch details and the texture features in
the middle of the tree. This fully illustrates the effectiveness of
the proposed MGSSNet in capturing multiscale detailed features
and global information.

In order to verify the robustness of the proposed model, a
remote sensing image containing a church was selected from
the NWPU-RESISC45 dataset to carry out the visualization
experiment of the reconstructed image. At around 0.25 bpp,
different compression methods are used for image compression
and reconstruction. In the experimental results, two local areas
were selected for magnification, including the roof in the upper
left and the clock tower in the upper right, for visual comparison
of the reconstructed images. Fig. 11 gives the reconstructed
image obtained by the proposed MGSSNet and eight compari-
son methods. Because the MGSSNet network can fully extract
the multiscale detail features and global information of the
image, more texture features are retained in the reconstructed
image, and the overall quality of the reconstructed image is
also improved, with almost no artifacts and noise. Therefore,
the proposed MGSSNet achieves the best visual quality of the
reconstructed image.
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Fig. 10. Visualization comparison of reconstructed images obtained by different methods on the San Francisco dataset. (a) Original. (b) Minnen et al. (bpp:
0.2976; PSNR: 31.02; MS-SSIM: 9.58). (c) Minnen et al. (mean) (bpp: 0.2971; PSNR: 30.91; MS-SSIM: 9.54). (d) Balle et al. (hyperprior) (bpp: 0.2944; PSNR:
30.91; MS-SSIM: 9.62). (e) Balle et al. (factorized-ReLU) (bpp: 0.2938; PSNR: 29.348; MS-SSIM: 8.96). (f) Cheng et al. (bpp: 0.3054; PSNR: 29.58; MS-SSIM:
9.50). (g) JPEG2000 (bpp: 0.3157; PSNR: 23.81; MS-SSIM: 1.34). (h) Webp (bpp: 0.3681; PSNR: 24.98; MS-SSIM: 2.17). (i) BPG (bpp: 0.3192; PSNR: 25.51;
MS-SSIM: 2.27). (j) MGSSNet (bpp: 0.3043; PSNR: 31.50; MS-SSIM: 9.956).

Fig. 11. Visualization comparison of reconstructed images obtained by different methods on the dataset NWPU-RESISC45. (a) Original. (b) Minnen et al. (bpp:
0.2499; PSNR: 32.96; MS-SSIM: 7.69). (c) Minnen et al. (mean) (bpp: 0.2469; PSNR: 32.90; MS-SSIM: 7.64). (d) Balle et al. (hyperprior) (bpp: 0.2473; PSNR:
33.00; MS-SSIM: 7.61). (e) Balle et al. (factorized-ReLU) (bpp: 0.2404; PSNR: 31.47; MS-SSIM: 7.47). (f) Cheng et al. (bpp: 0.2600; PSNR: 32.67; MS-SSIM:
8.38). (g) JPEG2000 (bpp: 0.2591; PSNR: 23.43; MS-SSIM: 1.16). (h) Webp (bpp: 0.3193; PSNR: 24.62; MS-SSIM:1.36). (i) BPG (bpp: 0.2770; PSNR: 25.09;
MS-SSIM: 1.57). (j) MGSSNet (bpp: 0.2565; PSNR: 32.86; MS-SSIM: 8.41).
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Fig. 12. Comparison of ablation experimental results of different methods on the San Francisco dataset. (a) PSNR. (b) MS-SSIM.

Fig. 13. Comparison of ablation experimental results of different methods on the NWPU-RESISC45 dataset. (a) PSNR. (b) MS-SSIM.

F. Ablation Experiments

In order to verify the effectiveness of each module, some abla-
tion experiments were performed in this article. Among them: 1)
baseline: baseline model; 2) MGSSNet (SSIF-AM): SSIF-AM
is added after the first three downsampling of the main encoder
and the first three upsampling of the main decoder, respectively;
3) MGSSNet (MHG-AM): MHG-AM is added after the third
downsampling of the main encoder and the first upsampling of
the main decoder; 4) MGSSNet: SSIF-AM is added after the
first and second downsampling of the main encoder and the
second and third upsampling of the main decoder, and LGCM is
added after the third downsampling of the main encoder and the
first upsampling of the main decoder. Fig. 12 shows the results
of the ablation experiment on the dataset San Francisco, and
Fig. 13 shows the results of the ablation experiment on the dataset
NWPU-RESISC45. As can be seen in Figs. 12 and 13, baseline
has the lowest performance in both PSNR and MS-SSIM. In
most cases, the performance of MGSSNet (MHG-AM) is better
than that of Baseline, which also verifies the importance of
global information for compressing the network. In addition, the
performance of MGSSNet (SSIF-AM) on PSNR and MS-SSIM

is significantly higher than that of baseline, which indicates that
multiscale local information plays a significant role in improving
the overall quality of the reconstructed image and improving
the structural similarity. Further comparison between MGSSNet
(SSIF-AM) and MGSSNet (MHG-AM) shows that multiscale
local information is more important than global information in
this network, which can preserve the edge and texture informa-
tion of the image to a greater extent. At the same bit rate, the
proposed MGSSNet has the highest PSNR and MS-SSIM, and
the performance advantage of the proposed method is further
increased at the high bit rate. This shows that MGSSNet not
only effectively extracts multiscale local information and global
information, but also effectively fuses the two.

IV. DISCUSSION

A. Generalization Analysis of Modules

To verify the generalization ability of the proposed SSIF-AM,
MHG-AM, and LGCM modules, some generalization experi-
ments were conducted. In this article, a publicly image compres-
sion method [Balle et al. (factorized-ReLU)] was selected as the
baseline network. Subsequently, each module was embedded
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Fig. 14. Generalization results of different modules on the San Francisco dataset. (a) PSNR. (b) MS-SSIM.

into the baseline network to verify the generalization ability of
the module itself. The dataset used is San Francisco. Fig. 14
shows the rate distortion performance curve of the network
after each module is added. It can be seen that in Fig. 14,
the rate-distortion performance of the baseline network is the
lowest. After adding the proposed modules, i.e., Balle et al.
(factorized-ReLU) (SSIF-AM), Balle et al. [40] (factorized-
ReLU) (MHG-AM), and Balle et al. [40] (factorized-ReLU)
(LGCM), the significant improvements in PSNR and MS-SSIM
have been achieved. This fully proves that both multiscale local
features and long-distance global features play an effective role
in improving the compression performance of remote sensing
images. It also confirms the generalization of each module.
It is worth mentioning that the improvement in rate-distortion
performance brought by the SSIF-AM module on the baseline
network Balle et al. [40] (factorized-ReLU) is remarkable. At 1.1
bpp, compared with Balle et al. (factorized-ReLU), the PSNR of
Balle et al. [40] (factorized-ReLU) (MHG-AM) and Balle et al.
[40] (factorized-ReLU) (LGCM) achieves improvements of
8.8% and 7.0%, respectively. Especially, Balle et al. (factorized-
ReLU) (SSIF-AM) reached a remarkable 11.4% improvement.
The reason is that Balle et al. (factorized-ReLU) itself cannot
effectively fuse multiscale local features and long-range global
features. However, SSIF-AM, MHG-AM, and LGCM just com-
pensate for this deficiency, resulting in significant performance
improvements.

B. The Impact of Reconstructed Images on Some Applications

In order to further verify the effectiveness of the proposed
MGSSNet method, the reconstructed images obtained by the
proposed MGSSNet method and Minnen et al. [14], Min-
nen et al. [14] (mean), Balle et al. [40] (hyperprior), Balle et al.
[40] (factorized-ReLU), and Cheng et al. [11] are compared in
remote sensing scene image classification. The quality of these
reconstructed images is evaluated by classification performance.
The classification method used in this article is an efficient
multiscale transformer and cross-level attention learning for
remote sensing scene classification [45], and the dataset used
for training is NWPU-RESISC45, and the training ratio is 10%.

Fig. 15. OA value of the reconstructed image obtained by different com-
pression methods in remote sensing scene classification (the dataset used is
NWPU-RESISC45).

The images used for compression and the images used for remote
sensing scene classification training are not crossed, and the
reconstructed images are only used for the test of classification
performance, not for the training of classification networks. To
ensure the fairness of the experiment, the bitrate of all com-
pression methods is set at around 0.81 bpp. It can be seen that in
Fig. 15, the proposed MGSSNet achieves the highest OA, which
is more than 0.73%, 0.73%, 0.91%, 0.91%, and 0.37% than that
of Minnen et al. [14], Minnen et al. [14] (mean), Balle et al. [40]
(hyperprior), Balle et al. [40] (factorized-ReLU), and Cheng et
al. [11], respectively.

Fig. 16 shows the confusion matrix of the reconstructed im-
ages of Minnen et al. [14], Minnen et al. [14] (mean), Balle et al.
[40] (hyperprior), Balle et al. [40] (factorized-ReLU), Cheng et
al. [11], and the proposed MGSSNet method for remote sensing
image classification. It can be seen that for the classes of “river,”
“baseball_diamond,” and “cloud,” the classification effect of the
proposed method is better than that of other methods. This is due
to the fact that these types of scenes contain more global visual
features, and the proposed MGSSNet network can enhance
the capture of global information. For remote sensing scene
classification, it is important to effectively obtain local features
with complex spatial information and geometric structure, and
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Fig. 16. Confusion matrix of reconstructed images obtained by different compression methods for remote sensing scene classification. (a), (b), (c), (d), (e), and
(f) correspond to the confusion matrices of Minnen et al. [14], Minnen et al. [14] (mean), Balle et al. [40] (hyperprior), Balle et al. [40] (factorized-ReLU), Cheng
et al. [11], and MGSSNet, respectively.
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to efficiently retain global visual features. The proposed MGSS-
Net uses SSIF-AM to obtain multiscale local features, uses
MHG-AM to obtain global visual features, and effectively fuses
global visual features and multilevel local information through
the designed LGCM, ultimately generating efficient discrimina-
tive features. This is why the proposed MGSSNet method can
provide the best classification performance for remote sensing
scene image.

V. CONCLUSION

In this article, we propose an MGSSNet network based on
multihead global attention and spatial spectral information fu-
sion for the compression of remote sensing images. Specifically,
this article designs an SSIF-AM for capturing both microfeatures
and large-scale features; in addition, this article constructs an
MHG-AM for capturing global visual features. Finally, this
article proposes an LGCM to coordinate the local features of
SSIF-AM and the global context features of MHG-AM, so as
to help MGSSNet achieve high-quality image compression and
reconstruction work, and achieve very superior rate distortion
performance. Specifically, at 1.1 bpp, MGSSNet achieves PSNR
improvements of 2.9%, 4.2%, 3.2%, 18.9%, and 4.4% com-
pared to that of Minnen et al. [14], Minnen et al. [14] (mean),
Balle et al. [40] (hyperprior), Balle et al. [40] (factorized-ReLU),
and Cheng et al. [11], respectively. The quantitative and visual
analysis results on different remote sensing datasets show that
the introduced SSIF-AM, MHG-AM, and LGCM can adaptively
retain multiscale detail features and global context relationships,
thereby improving the compression performance. It is worth
noting that, the proposed SSIF-AM, MHG-AM, and LGCM can
be inserted into any neural-network-based image compression
method to improve their performance. This indicates that the
proposed method has strong generalization and can be easily
integrated into other compression networks. In future article,
we will try to perform the hierarchical compression processing
for images. By optimizing multilevel features, the information
gap between the latent representation and the specific task is nar-
rowed, so as to further improve the compression performance.
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